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Abstract

We establish the existence, uniqueness, and stability of the stationary solution of the one-dimensional viscous
Burgers equation with the Dirichlet boundary conditions ona finite interval. We obtain explicit formulas for
solutions and analytically determine the Lyapunov exponents characterizing the asymptotic behavior of arbitrary
solutions approaching the stationary one.
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Introduction

Burgers’ equation has the same nonlinearity form as the Navier-Stokes equations [1]. It is often used as a model
equation in studying computational methods for solving partial differential equations (PDEs) [2]. In this paper we
establish the existence, uniqueness, and stability of the stationary solution of the one-dimensional viscous Burgers
equation (1) on a finite interval with the Dirichlet boundaryconditions (4). We use the Cole-Hopf transformation
to give the result for any combination ofA and B in the boundary conditions (4). Using a different method
(linearization) H.-O. Kreiss and G. Kreiss (1985) gave a similar result for a subset of cases:A ≥ |B|, B ≤ 0 < A, as
well as for Burgers’ equation with forcing [8]. We obtain explicit formulas for solutions and analytically determine
the Lyapunov exponents characterizing the asymptotic behavior of arbitrary solutions approaching the stationary
solution with the same boundary conditions (4).

1 Explicit formulas for stationary solutions

The viscous Burgers equation is the nonlinear partial differential equation

ut + uux = νuxx (1)

with ν = const> 0. If we setut to zero, for the stationary solutionu = uS (x) we obtain

uux = νuxx. (2)

We note thatuux =
1
2

(u2)′x, therefore (2) gives

2νux = u2 + C0. (3)

First, assume thatux , 0 andC0 is negative,C0 = −a2 < 0 (i. e. 2νux < u2). We havedx = 2νdu/(u2 − a2),

ax
ν
= ln
(
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If, in addition,|u| < a (i. e. ux < 0), then

u = a
C1 − exp(ax/ν)
C1 + exp(ax/ν)

= −2νk0 tanh(k0(x − x0)), where k0 =
a
2ν
, x0 =

1
k0

artanh
u(0)
2νk0
,

while if |u| > a (i. e. 0< 2νux < u2), then

u = a
C1 + exp(ax/ν)
C1 − exp(ax/ν)

= −2νk0 coth(k0(x − x0)), where k0 =
a
2ν
, x0 =

1
k0

arcoth
u(0)
2νk0
.

Now assume thatC0 is positive,C0 = a2 > 0 (i. e. 2νux > u2). Thendx = 2νdu/(u2 + a2),

ax
2ν
= arctan

u
a
+C1, where C1 = − arctan

u(0)
a

; hence u = a tan
(ax
2ν
− C1

)

;

or, equivalently,

u = −2νk0 cot(k0(x − x0)), wherek0 =
a
2ν
, x0 =

1
k0

arccot
u(0)
2νk0
.

Finally, if C0 = 0, thenu = −2ν/(x − x0); if ux = 0, thenu = const andu2 = |C0| = const. For convenience, all
explicit formulas for stationary solutions are listed together in Table 1 (left column).

Table 1. Stationary solutionsuS of Burgers equation and the corresponding solutionsϕS of the heat equation (6).
H = 2ν(B − A) − lAB; 2νk0 = |C0|

1/2, whereC0 is the constant in (3);uS (x) = −2ν(ln |ϕS (x, t)|)′x.

SolutionuS (x) of (1) Conditions onu, ux Conditions onA, B, H SolutionϕS (x, t) of (6)

(a) −2νk0 cot(k0(x − x0)) 0 ≤ u2 < 2νux A < B, H > 0 C sin(k0(x − x0)) exp(−νk2
0t)

2νk0 tan(k0(x − x∗0)) (the same conditions and same solution as above) C cos(k0(x − x∗0)) exp(−νk2
0t)

(b) −2ν/(x − x0) 0 < u2 = 2νux A < B, H = 0 C(x − x0)
(c) −2νk0 coth(k0(x − x0)) 0 < 2νux < u2 A < B, H < 0 C sinh(k0(x − x0)) exp(νk2

0t)
(d) ±2νk0 = const ux = 0 A = B C exp(νk2

0t ∓ k0x)
(e) −2νk0 tanh(k0(x − x0)) ux < 0 A > B C cosh(k0(x − x0)) exp(νk2

0t)

We will now consider Burgers equation (1) with the Dirichletboundary conditions on the intervalx ∈ [0, l]:

u(0, t) = A, u(l, t) = B, (4)

whereA and B are constants. Let us find out which explicit formulas (Table1) can represent the stationary
solutionuS of equation (1) with boundary conditions (4). Here we are concerned exclusively with solutions that
are continuous, bounded, and sufficiently smooth everywhere on the intervalx ∈ [0, l].

Clearly, whenA > B, the stationary solutionuS can only have form (e)−2νk0 tanhk0(x − x0) which is the only
decreasing function in the left column of Table 1. WhenA = B, the stationary solutionuS can only have form (d);
all other explicit formulas foruS defined on [0, l] are either strictly decreasing or strictly increasing functions ofx.

To examine the stationary solutionuS (x) for the trickiest case,A < B, we introduce the quantity

H = 2ν(B − A) − lAB.

An elementary calculation shows thatuS has form (b) if and only ifH = 0, A < B. It remains to analyze the
situations that yield solutions (a) and (c). We note that, atany given point (x, u(x)), any graphuS of form (a) is
steeper than (b), while any graph of form (c) is less steep than (b). Indeed, for any stationary solutionuS we have
a constant value ofC0 = 2νux − u2; solutions (a) are obtained from (3) when 2νux > u2 (steeper graphs,C0 > 0,
H > 0), while solutions (c) are obtained from (3) when 2νux < u2 (less steep graphs,C0 < 0, H < 0). Thus when
A < B andH > 0, we can only haveuS given by formula (a); whenA < B andH < 0 we can only haveuS given
by formula (c).

Note also that we have not yet proved that a stationary solution satisfying boundary conditions (4)exists for an
arbitrary combination ofA andB. (We will prove this in Section 3.) Still, in the simple cases(b) A < B, H = 0
and (d)A = B, it is already obvious that such stationary solutions do exist.
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2 The Cole-Hopf transformation

Burgers equation (1) is a rare example of a nonlinear PDE thatcan be linearized using a simple transformation.
Specifically, if in equation (1) we substitute

u(x, t) = −2ν(ln |ϕ(x, t)|)′x (5)

then for the unknown functionϕ(x, t) we obtain theheat equation

ϕt = νϕxx. (6)

The substitution (5) is known as the Cole-Hopf transformation [1, 2, 5, 6]. Let us discuss some interesting proper-
ties of this transformation.

Firstly, transformation (5) can produce the same solutionu(x, t) of (1) from many different solutionsϕ(x, t) of (6);
theseϕ(x, t) may differ from each other by an arbitrary nonzero mutiplierC. Indeed, (ln|ϕ|)′x = (ln |Cϕ|)′x for any
constantC , 0.

Secondly, zero values ofϕ(x, t) are mapped by (5) into discontinuities ofu(x, t). Therefore, to get a continuous
u(x, t), it is not enough to start from a continuous solutionϕ(x, t) of (6). We, moreover, need to restrict ourselves
to those solutionsϕ(x, t) that are nonzero everywhere on [0, l] for all t ≥ 0.

Further, stationary solutionsuS (x) of (1) correspond to solutionsϕS (x, t) of (6) that may or may not be stationary.
Explicit formulas for thoseϕS (x, t) that yield stationary solutionsuS (x) are listed in the right column of Table 1.
Interestingly, among theseϕS (x, t) we find “non-physical” solutions of the heat equation that grow infinitely large
whent → ∞.

3 Existence and uniqueness of the stationary solution

Using the Cole-Hopf transformation (5), we will now establish the existence and uniqueness of the stationary
solution of (1), (4) for anyA andB. Note that (5) transforms the problem (1), (4) into the following problem for
heat equation (6) with the Robin boundary conditions:

ϕt = νϕxx

ϕx(0, t) +
A
2ν
ϕ(0, t) = 0, ϕx(l, t) +

B
2ν
ϕ(l, t) = 0. (7)

Denote byϕS the solution of (6) that under transformation (5) yields thestationary solutionuS of (1). OurϕS

must have the formϕS (x, t) = X(x) · T (t). (This can be checked directly by substitutingϕS into (5), or simply by
inspection of the right column in Table 1.) HereX(x) is a function of thex coordinate only, andT (t) is a function
of time t only. Substituting thisϕS into the heat equation(6) and dividing through byνT X, we get

T ′

νT
=

X′′

X
= −λ.

(One ratio is a function oft only, while the other ratio is a function ofx only. In order for these two ratios to be
equal, they both must be equal to a constant which we denote−λ.)

For the functionX(x), problem (6), (7) translates into an eigenvalue problem (aSturm-Liouville problem) with
Robin boundary conditions:

−X′′(x) = λX(x) (8)

X′(0)+
A
2ν

X(0) = 0, X′(l) +
B
2ν

X(l) = 0; (9)

and for the functionT (t) we readily obtain

T (t) = C exp(−νλt). (10)
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For uS to be continuous,ϕS must be nonzero everywhere on the interval [0, l]. So the question now is: how many
eigenfunctions of (8), (9) are nonzero everywhere on [0, l]? The answer is well known: for anyA andB, there is
one and only one such eigenfunction. This follows from the familiar fact that, for anyA andB in problem (8), (9),
all eigenvaluesλi (λ0 < λ1 < . . .) have multiplicity 1, and the respective eigenfunctionXi(x) has exactlyi zeros
inside the interval (0, l); see [3, pp. 14-18]. Thus, in problem (8), (9) we are interested in the eigenfunctionX0(x)
that has no zeros forx ∈ [0, l] and corresponds to the least eigenvalueλ0. ForϕS we find, up to a nonzero multiplier
C,

ϕS (x, t) = CX0(x) · exp(−νλ0t) (ϕS has no zeros forx ∈ [0, l]).

Therefore, for anyA andB, there exists a unique stationary solution uS (x) of Burgers equation (1) with boundary
conditions (4):

uS (x) = −2ν(ln |ϕS (x, t)|)′x = −2ν(ln |X0(x)|)′x.

4 Stability and Lyapunov exponents

Now let us study the evolution of the absolute value|u − uS | for an arbitrary non-stationary solution

u(x, t) = −2ν(ln |ϕ(x, t)|)′x = −2ν
ϕx(x, t)
ϕ(x, t)

,

where bothu(x, t) anduS (x) satisfy the Burgers equation (1) with boundary conditions(4), andϕ(x, t) is a suitable
positive solution of (6). It is known that the solutionu(x, t) exists for “reasonable” combinations of the boundary
conditions (4) and initial conditionu(x, 0) [9]. We say thatuS is stable if |u − uS | → 0 ast→ ∞, for an arbitraryu
obeying (1), (4). We have

|u − uS | = 2ν

∣

∣

∣

∣

∣

∣

ϕS
x

ϕS
−
ϕx

ϕ

∣

∣

∣

∣

∣

∣

= 2ν

∣

∣

∣

∣

∣

∣

ϕϕS
x − ϕ

Sϕx

ϕSϕ

∣

∣

∣

∣

∣

∣

= 2ν

∣

∣

∣

∣

∣

∣

ϕ(ϕS
x − ϕx) + ϕx(ϕ − ϕS )

ϕSϕ

∣

∣

∣

∣

∣

∣

= 2ν
∣

∣

∣

∣

∣

ϕxϕ̃ − ϕϕ̃x

ϕSϕ

∣

∣

∣

∣

∣

.

Here we have introduced the notation ˜ϕ = ϕ − ϕS . Taking into account thatu = −2νϕx/ϕ, for all x ∈ [0, l] and all
t ≥ 0 we obtain the estimate

|u − uS | ≤ |u| ·
∣

∣

∣

∣

∣

ϕ̃

ϕS

∣

∣

∣

∣

∣

+ 2ν
∣

∣

∣

∣

∣

ϕ̃x

ϕS

∣

∣

∣

∣

∣

≤ max
x ∈ [0,l]

|u(x, 0)| ·
∣

∣

∣

∣

∣

ϕ̃

ϕS

∣

∣

∣

∣

∣

+ 2ν
∣

∣

∣

∣

∣

ϕ̃x

ϕS

∣

∣

∣

∣

∣

. (11)

In inequality (11) we have used the maximum principle for Burgers equation: the solutionu(x, t) attains its maxi-
mum either in the initial valueu(x, 0) or at the boundary of the interval [0, l]. (A discussion of maximum principles
for PDEs can be found in [4, 7, 9]. The proof of the maximum principle for Burgers equation is similar to that for
linear parabolic PDEs.)

Expandϕ(x, t) in a series over the system of eigenfunctionsXi(x) of (8), (9):

ϕ(x, t) =
∞
∑

i=0

αiXi(x)Ti(t) =
∞
∑

i=0

ϕi(x, t), Ti(t) = exp(−νλit), Ti(0) = 1. (12)

In this series, the termϕ0(x, t) = α0X0(x)T0(t) is the same asϕS (Table 1) up to a constant nonzero multiplier. Let
us chooseC in the expression ofϕS (Table 1) so thatϕ0 = ϕ

S . If we now compute the differenceϕ − ϕS , the term
ϕ0(x, t) will cancel out, and we get

ϕ̃ = ϕ − ϕS =

∞
∑

i=1

ϕi(x, t). (13)

SinceTi(t) = exp(−νλit), we see thatϕ1(x, t) becomes thelargest term in (13) whent → ∞ (assumingα1 , 0 in
(12)). We then have

max
x ∈ [0,l]

|ϕS | ≍ exp(−νλ0t), max
x ∈ [0,l]

|ϕ̃| ≍ exp(−νλ1t), max
x ∈ [0,l]

|ϕ̃x| ≍ exp(−νλ1t) ast→ ∞,
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so the estimate (11) results in

max
x ∈ [0,l]

|u − uS
| ≍ exp(−ν(λ1 − λ0)t) ast → ∞. (14)

This paves the way to proving thestability of the stationary solution uS . Indeed, the difference|u − uS | is an
exponentially vanishing quantity whent → ∞. Nevertheless, the convergence of|u − uS | to zero might turn out to
be very slow; this is the case when the least two eigenvaluesλ0 andλ1 in problem (8), (9) differ only slightly.

We got the estimate (14) under the assumption thatα1 , 0 in (12), that is, in the series expansion ofϕ over the
system of eigenfunctionsXi(x) there is a nonzero termϕ1 containing the eigenfunctionX1(x). However, if it so
happens that one or more initial terms in (13) are zero, then the series (13) for ˜ϕ = ϕ − ϕS will start at someϕn

(n > 1). In the general case, therefore, instead of (14) we would have

max
x ∈ [0,l]

|u − uS
| ≍ exp(−ν(λn − λ0)t) ast → ∞, (15)

wheren is the number of the first nonzero term in the series expansionof ϕ̃ = ϕ − ϕS (13). We have thus proved
that the stationary solutionuS is stable:|u − uS | → 0 ast→ ∞.

Note that the functionsϕi (i = 1, 2, . . .) in (12) have the same explicit formulas asϕS (Table 1), except that eachϕi

contains its own values in place ofk0 andx0; let us denote these new constant values byki andxi, respectively.

All constantski and xi can be found if we substitute the general solutions of (8) (trigonometric, exponential or
hyperbolic functions) for the eigenfunctionsXi(x) (i = 0, 1, 2, . . .) in the boundary conditions (9). In most cases
(i. e., cases (a), (c), (e) in Table 1), this substitution yields the following transcendent equations forξi = kil:

cotξi =
p
ξi
+ qξi for ϕi of form (a) in Table 1, λi = k2

i > 0, and (16)

cothξi =
p
ξi
− qξi for ϕi of form (c) or (e) in Table 1, λi = −k2

i < 0, (17)

where ξi = kil > 0, p =
lAB

2ν(B − A)
, q =

2ν
l(B − A)

.

The transcendent equation (16), with cotξi, may correspond toany i, whereas equation (17), with cothξi, may
correspond only toi = 0, 1 (the least two eigenvaluesλ0, λ1) because hyperbolic functions cannot have more than
one zero value on the interval [0, l].

WhenA = B in (4) and (9), we have an exceptional case: allki andλi can be found in a closed form. Here the
interval [0, l] contains a whole number of semiperiods of the eigenfunction Xi(x) = sin(ki(x − xi)), i = 1, 2, . . . ,
which readily yields

ki =
πi
l

(i = 1, 2, . . .), while k0 =
|A|
2ν
, X0(x) = C exp(±k0x); see Table 1 (d).

Therefore, ifA = B, we find

λn =

(

πn
l

)2
(n ≥ 1), λ0 = −

( A
2ν

)2

, and λn − λ0 =

(

πn
l

)2
+

( A
2ν

)2

; cf. (14), (15).

Now we will reuse the customary definition ofLyapunov exponents in the context of problem (1), (4) for Burgers
equation. Letu(x, t) be a solution of (1),(4). The Lyapunov exponentµ of this solution is defined as

µ = lim sup
t→∞

ln ||u − uS ||

t
. (18)

This definition, in general, depends on our choice of the norm|| · ||. If u(x, t) behaves so that||u − uS || ≍ exp(δt) as
t→ ∞, then it is easy to see thatδ is the Lyapunov exponent of thisu(x, t).

Let us use the norm defined as the maximum absolute value:

||w(x)|| = max
x ∈ [0,l]

|w(x)|.
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Then estimates (14), (15) allow us to determine all Lyapunovexponents for anyu(x, t) satisfying (1), (4):

µi = −ν(λi − λ0), i = 1, 2, . . . , (19)

where, as before,λi are eigenvalues of (8), (9). Solutionsu(x, t) corresponding to the Lyapunov exponentsµi can
be written simply as

ui(x, t) = −2ν(ln |ϕS (x, t) + ϕi(x, t)|)′x, i = 1, 2, . . . ,

whereϕi(x, t) is the respective term of (12). For example, whenuS has the form (a) in Table 1, we have

ϕS (x, t) = C sin(k0(x − x0)) exp(−νk2
0t) (ϕS has no zeros forx ∈ [0, l]),

ϕi(x, t) = αi sin(ki(x − xi)) exp(−νk2
i t) (ϕi hasi zeros forx ∈ [0, l]),

and we can write a solutionui(x, t) corresponding to the Lyapunov exponentµi as follows:

ui(x, t) = −2ν
Ck0 cos(k0(x − x0)) + αiki cos(ki(x − xi)) · exp(−ν(k2

i − k2
0)t)

C sin(k0(x − x0)) + αi sin(ki(x − xi)) · exp(−ν(k2
i − k2

0)t)
. (20)

Because each individual term in series (12) satisfies the Robin boundary conditions (7), each functionui(x, t)
defined as above must satisfy the Dirichlet boundary conditions (4).

We have thus determined the Lyapunov exponents in the nonlinear problem (1), (4) for Burgers equation: we have
found that formula (19) relates the Lyapunov exponentsµi to the eigenvaluesλi of the linear problem (8), (9).
All Lyapunov exponentsµi are negative; there are countably many of them; we can write explicit formulas for
the corresponding solutionsui(x, t) of Burgers equation (1). This is an interesting example of asituation where
one can analytically determine the Lyapunov exponents for solutions of a nonlinear PDE with Dirichlet boundary
conditions.
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