Lyapunov Exponents for Burgers' Equation

Alexei Kourbatov ${ }^{1}$
${ }^{1}$ Formerly with Moscow Institute of Physics and Technology
http://www.JavaScripter.net/math/pde/burgersequationdirichletproblem.htm

Abstract

We establish the existence, uniqueness, and stability of the stationary solution of the one-dimensional viscous Burgers equation with the Dirichlet boundary conditions on a finite interval. We obtain explicit formulas for solutions and analytically determine the Lyapunov exponents characterizing the asymptotic behavior of arbitrary solutions approaching the stationary one.

Keywords: nonlinear PDE, Burgers equation, boundary value problem, Dirichlet boundary conditions, Lyapunov exponent.

AMS Subject Classification: Primary 35K55; Secondary 35B40, 35C05.

Introduction

Burgers' equation has the same nonlinearity form as the Navier-Stokes equations [1]. It is often used as a model equation in studying computational methods for solving partial differential equations (PDEs) [2]. In this paper we establish the existence, uniqueness, and stability of the stationary solution of the one-dimensional viscous Burgers equation (1) on a finite interval with the Dirichlet boundary conditions (4). We use the Cole-Hopf transformation to give the result for any combination of A and B in the boundary conditions (4). Using a different method (linearization) H.-O. Kreiss and G. Kreiss (1985) gave a similar result for a subset of cases: $A \geq|B|, B \leq 0<A$, as well as for Burgers' equation with forcing [8]. We obtain explicit formulas for solutions and analytically determine the Lyapunov exponents characterizing the asymptotic behavior of arbitrary solutions approaching the stationary solution with the same boundary conditions (4).

1 Explicit formulas for stationary solutions

The viscous Burgers equation is the nonlinear partial differential equation

$$
\begin{equation*}
u_{t}+u u_{x}=v u_{x x} \tag{1}
\end{equation*}
$$

with $v=$ const >0. If we set u_{t} to zero, for the stationary solution $u=u^{S}(x)$ we obtain

$$
\begin{equation*}
u u_{x}=v u_{x x} . \tag{2}
\end{equation*}
$$

We note that $u u_{x}=\frac{1}{2}\left(u^{2}\right)_{x}^{\prime}$, therefore (2) gives

$$
\begin{equation*}
2 v u_{x}=u^{2}+C_{0} \tag{3}
\end{equation*}
$$

First, assume that $u_{x} \neq 0$ and C_{0} is negative, $C_{0}=-a^{2}<0$ (i.e. $2 v u_{x}<u^{2}$). We have $d x=2 v d u /\left(u^{2}-a^{2}\right)$,

$$
\frac{a x}{v}=\ln \left(C_{1}\left|\frac{a-u}{a+u}\right|\right), \quad \text { where } C_{1}=\left|\frac{a+u(0)}{a-u(0)}\right|
$$

If, in addition, $|u|<a$ (i. e. $u_{x}<0$), then

$$
u=a \frac{C_{1}-\exp (a x / v)}{C_{1}+\exp (a x / v)}=-2 v k_{0} \tanh \left(k_{0}\left(x-x_{0}\right)\right), \quad \text { where } k_{0}=\frac{a}{2 v}, \quad x_{0}=\frac{1}{k_{0}} \operatorname{artanh} \frac{u(0)}{2 v k_{0}},
$$

while if $|u|>a$ (i.e. $0<2 v u_{x}<u^{2}$), then

$$
u=a \frac{C_{1}+\exp (a x / v)}{C_{1}-\exp (a x / v)}=-2 v k_{0} \operatorname{coth}\left(k_{0}\left(x-x_{0}\right)\right), \quad \text { where } k_{0}=\frac{a}{2 v}, \quad x_{0}=\frac{1}{k_{0}} \operatorname{arcoth} \frac{u(0)}{2 v k_{0}} .
$$

Now assume that C_{0} is positive, $C_{0}=a^{2}>0$ (i.e. $2 v u_{x}>u^{2}$). Then $d x=2 v d u /\left(u^{2}+a^{2}\right)$,

$$
\frac{a x}{2 v}=\arctan \frac{u}{a}+C_{1}, \quad \text { where } C_{1}=-\arctan \frac{u(0)}{a} ; \quad \text { hence } \quad u=a \tan \left(\frac{a x}{2 v}-C_{1}\right)
$$

or, equivalently,

$$
u=-2 v k_{0} \cot \left(k_{0}\left(x-x_{0}\right)\right), \quad \text { where } k_{0}=\frac{a}{2 v}, \quad x_{0}=\frac{1}{k_{0}} \operatorname{arccot} \frac{u(0)}{2 v k_{0}} .
$$

Finally, if $C_{0}=0$, then $u=-2 v /\left(x-x_{0}\right)$; if $u_{x}=0$, then $u=$ const and $u^{2}=\left|C_{0}\right|=$ const. For convenience, all explicit formulas for stationary solutions are listed together in Table 1 (left column).

Table 1. Stationary solutions u^{S} of Burgers equation and the corresponding solutions φ^{S} of the heat equation (6).

$$
H=2 v(B-A)-l A B ; \quad 2 v k_{0}=\left|C_{0}\right|^{1 / 2}, \text { where } C_{0} \text { is the constant in }(3) ; \quad u^{S}(x)=-2 v\left(\left.\ln \left|\varphi^{S}(x, t)\right|\right|_{x} ^{\prime}\right.
$$

Solution $u^{S}(x)$ of (1)	Conditions on u, u_{x}	Conditions on A, B, H	Solution $\varphi^{S}(x, t)$ of (6)
(a) $-2 v k_{0} \cot \left(k_{0}\left(x-x_{0}\right)\right)$	$0 \leq u^{2}<2 v u_{x}$	$A<B, H>0$	$C \sin \left(k_{0}\left(x-x_{0}\right)\right) \exp \left(-v k_{0}^{2} t\right)$
$2 v k_{0} \tan \left(k_{0}\left(x-x_{0}^{*}\right)\right)$	$($ the same conditions and same solution as above $)$	$C \cos \left(k_{0}\left(x-x_{0}^{*}\right)\right) \exp \left(-v k_{0}^{2} t\right)$	
(b) $-2 v /\left(x-x_{0}\right)$	$0<u^{2}=2 v u_{x}$	$A<B, H=0$	$C\left(x-x_{0}\right)$
(c) $-2 v k_{0} \operatorname{coth}\left(k_{0}\left(x-x_{0}\right)\right)$	$0<2 v u_{x}<u^{2}$	$A<B, H<0$	$C \sinh \left(k_{0}\left(x-x_{0}\right)\right) \exp \left(v k_{0}^{2} t\right)$
(d) $\pm 2 v k_{0}=\operatorname{const}$	$u_{x}=0$	$A=B$	$C \exp \left(v k_{0}^{2} t \mp k_{0} x\right)$
(e) $-2 v k_{0} \tanh \left(k_{0}\left(x-x_{0}\right)\right)$	$u_{x}<0$	$A>B$	$C \cosh \left(k_{0}\left(x-x_{0}\right)\right) \exp \left(v k_{0}^{2} t\right)$

We will now consider Burgers equation (1) with the Dirichlet boundary conditions on the interval $x \in[0, l]$:

$$
\begin{equation*}
u(0, t)=A, \quad u(l, t)=B \tag{4}
\end{equation*}
$$

where A and B are constants. Let us find out which explicit formulas (Table 1) can represent the stationary solution u^{S} of equation (1) with boundary conditions (4). Here we are concerned exclusively with solutions that are continuous, bounded, and sufficiently smooth everywhere on the interval $x \in[0, l]$.
Clearly, when $A>B$, the stationary solution u^{S} can only have form (e) $-2 v k_{0} \tanh k_{0}\left(x-x_{0}\right)$ which is the only decreasing function in the left column of Table 1 . When $A=B$, the stationary solution u^{S} can only have form (d); all other explicit formulas for u^{S} defined on $[0, l]$ are either strictly decreasing or strictly increasing functions of x.
To examine the stationary solution $u^{S}(x)$ for the trickiest case, $A<B$, we introduce the quantity

$$
H=2 v(B-A)-l A B
$$

An elementary calculation shows that u^{S} has form (b) if and only if $H=0, A<B$. It remains to analyze the situations that yield solutions (a) and (c). We note that, at any given point ($x, u(x)$), any graph u^{S} of form (a) is steeper than (b), while any graph of form (c) is less steep than (b). Indeed, for any stationary solution u^{S} we have a constant value of $C_{0}=2 v u_{x}-u^{2}$; solutions (a) are obtained from (3) when $2 v u_{x}>u^{2}$ (steeper graphs, $C_{0}>0$, $H>0$), while solutions (c) are obtained from (3) when $2 v u_{x}<u^{2}$ (less steep graphs, $C_{0}<0, H<0$). Thus when $A<B$ and $H>0$, we can only have u^{S} given by formula (a); when $A<B$ and $H<0$ we can only have u^{S} given by formula (c).
Note also that we have not yet proved that a stationary solution satisfying boundary conditions (4) exists for an arbitrary combination of A and B. (We will prove this in Section 3.) Still, in the simple cases (b) $A<B, H=0$ and (d) $A=B$, it is already obvious that such stationary solutions do exist.

2 The Cole-Hopf transformation

Burgers equation (1) is a rare example of a nonlinear PDE that can be linearized using a simple transformation. Specifically, if in equation (1) we substitute

$$
\begin{equation*}
u(x, t)=-2 v(\ln |\varphi(x, t)|)_{x}^{\prime} \tag{5}
\end{equation*}
$$

then for the unknown function $\varphi(x, t)$ we obtain the heat equation

$$
\begin{equation*}
\varphi_{t}=v \varphi_{x x} \tag{6}
\end{equation*}
$$

The substitution (5) is known as the Cole-Hopf transformation [1, 2, 5, 6]. Let us discuss some interesting properties of this transformation.
Firstly, transformation (5) can produce the same solution $u(x, t)$ of (1) from many different solutions $\varphi(x, t)$ of (6); these $\varphi(x, t)$ may differ from each other by an arbitrary nonzero mutiplier C. Indeed, $(\ln |\varphi|)_{x}^{\prime}=(\ln |C \varphi|)_{x}^{\prime}$ for any constant $C \neq 0$.
Secondly, zero values of $\varphi(x, t)$ are mapped by (5) into discontinuities of $u(x, t)$. Therefore, to get a continuous $u(x, t)$, it is not enough to start from a continuous solution $\varphi(x, t)$ of (6). We, moreover, need to restrict ourselves to those solutions $\varphi(x, t)$ that are nonzero everywhere on $[0, l]$ for all $t \geq 0$.
Further, stationary solutions $u^{S}(x)$ of (1) correspond to solutions $\varphi^{S}(x, t)$ of (6) that may or may not be stationary. Explicit formulas for those $\varphi^{S}(x, t)$ that yield stationary solutions $u^{S}(x)$ are listed in the right column of Table 1. Interestingly, among these $\varphi^{S}(x, t)$ we find "non-physical" solutions of the heat equation that grow infinitely large when $t \rightarrow \infty$.

3 Existence and uniqueness of the stationary solution

Using the Cole-Hopf transformation (5), we will now establish the existence and uniqueness of the stationary solution of (1), (4) for any A and B. Note that (5) transforms the problem (1), (4) into the following problem for heat equation (6) with the Robin boundary conditions:

$$
\begin{gather*}
\varphi_{t}=v \varphi_{x x} \\
\varphi_{x}(0, t)+\frac{A}{2 v} \varphi(0, t)=0, \quad \varphi_{x}(l, t)+\frac{B}{2 v} \varphi(l, t)=0 . \tag{7}
\end{gather*}
$$

Denote by φ^{S} the solution of (6) that under transformation (5) yields the stationary solution u^{S} of (1). Our φ^{S} must have the form $\varphi^{S}(x, t)=X(x) \cdot T(t)$. (This can be checked directly by substituting φ^{S} into (5), or simply by inspection of the right column in Table 1.) Here $X(x)$ is a function of the x coordinate only, and $T(t)$ is a function of time t only. Substituting this φ^{S} into the heat equation(6) and dividing through by $v T X$, we get

$$
\frac{T^{\prime}}{v T}=\frac{X^{\prime \prime}}{X}=-\lambda
$$

(One ratio is a function of t only, while the other ratio is a function of x only. In order for these two ratios to be equal, they both must be equal to a constant which we denote $-\lambda$.)
For the function $X(x)$, problem (6), (7) translates into an eigenvalue problem (a Sturm-Liouville problem) with Robin boundary conditions:

$$
\begin{gather*}
-X^{\prime \prime}(x)=\lambda X(x) \tag{8}\\
X^{\prime}(0)+\frac{A}{2 v} X(0)=0, \quad X^{\prime}(l)+\frac{B}{2 v} X(l)=0 \tag{9}
\end{gather*}
$$

and for the function $T(t)$ we readily obtain

$$
\begin{equation*}
T(t)=C \exp (-v \lambda t) \tag{10}
\end{equation*}
$$

For u^{S} to be continuous, φ^{S} must be nonzero everywhere on the interval $[0, l]$. So the question now is: how many eigenfunctions of (8), (9) are nonzero everywhere on $[0, l]$? The answer is well known: for any A and B, there is one and only one such eigenfunction. This follows from the familiar fact that, for any A and B in problem (8), (9), all eigenvalues $\lambda_{i}\left(\lambda_{0}<\lambda_{1}<\ldots\right)$ have multiplicity 1 , and the respective eigenfunction $X_{i}(x)$ has exactly i zeros inside the interval ($0, l$); see [3, pp. 14-18]. Thus, in problem (8), (9) we are interested in the eigenfunction $X_{0}(x)$ that has no zeros for $x \in[0, l]$ and corresponds to the least eigenvalue λ_{0}. For φ^{S} we find, up to a nonzero multiplier C,

$$
\varphi^{S}(x, t)=C X_{0}(x) \cdot \exp \left(-v \lambda_{0} t\right) \quad\left(\varphi^{S} \text { has no zeros for } x \in[0, l]\right)
$$

Therefore, for any A and B, there exists a unique stationary solution $u^{S}(x)$ of Burgers equation (1) with boundary conditions (4):

$$
u^{S}(x)=-2 v\left(\ln \left|\varphi^{S}(x, t)\right|\right)_{x}^{\prime}=-2 v\left(\left.\ln \left|X_{0}(x)\right|\right|_{x} ^{\prime} .\right.
$$

4 Stability and Lyapunov exponents

Now let us study the evolution of the absolute value $\left|u-u^{S}\right|$ for an arbitrary non-stationary solution

$$
u(x, t)=-2 v(\ln |\varphi(x, t)|)_{x}^{\prime}=-2 v \frac{\varphi_{x}(x, t)}{\varphi(x, t)}
$$

where both $u(x, t)$ and $u^{S}(x)$ satisfy the Burgers equation (1) with boundary conditions (4), and $\varphi(x, t)$ is a suitable positive solution of (6). It is known that the solution $u(x, t)$ exists for "reasonable" combinations of the boundary conditions (4) and initial condition $u(x, 0)$ [9]. We say that u^{S} is stable if $\left|u-u^{S}\right| \rightarrow 0$ as $t \rightarrow \infty$, for an arbitrary u obeying (1), (4). We have

$$
\begin{aligned}
\left|u-u^{S}\right| & =2 v\left|\frac{\varphi_{x}^{S}}{\varphi^{S}}-\frac{\varphi_{x}}{\varphi}\right|=2 v\left|\frac{\varphi \varphi_{x}^{S}-\varphi^{S} \varphi_{x}}{\varphi^{S} \varphi}\right| \\
& =2 v\left|\frac{\varphi\left(\varphi_{x}^{S}-\varphi_{x}\right)+\varphi_{x}\left(\varphi-\varphi^{S}\right)}{\varphi^{S} \varphi}\right|=2 v\left|\frac{\varphi_{x} \tilde{\varphi}-\varphi \tilde{\varphi}_{x}}{\varphi^{S} \varphi}\right| .
\end{aligned}
$$

Here we have introduced the notation $\tilde{\varphi}=\varphi-\varphi^{S}$. Taking into account that $u=-2 v \varphi_{x} / \varphi$, for all $x \in[0, l]$ and all $t \geq 0$ we obtain the estimate

$$
\begin{equation*}
\left|u-u^{S}\right| \leq|u| \cdot\left|\frac{\tilde{\varphi}}{\varphi^{S}}\right|+2 v\left|\frac{\tilde{\varphi}_{x}}{\varphi^{S}}\right| \leq \max _{x \in[0, l]}|u(x, 0)| \cdot\left|\frac{\tilde{\varphi}}{\varphi^{S}}\right|+2 v\left|\frac{\tilde{\varphi}_{x}}{\varphi^{S}}\right| . \tag{11}
\end{equation*}
$$

In inequality (11) we have used the maximum principle for Burgers equation: the solution $u(x, t)$ attains its maximum either in the initial value $u(x, 0)$ or at the boundary of the interval [$0, l]$. (A discussion of maximum principles for PDEs can be found in $[4,7,9]$. The proof of the maximum principle for Burgers equation is similar to that for linear parabolic PDEs.)
Expand $\varphi(x, t)$ in a series over the system of eigenfunctions $X_{i}(x)$ of (8), (9):

$$
\begin{equation*}
\varphi(x, t)=\sum_{i=0}^{\infty} \alpha_{i} X_{i}(x) T_{i}(t)=\sum_{i=0}^{\infty} \varphi_{i}(x, t), \quad T_{i}(t)=\exp \left(-v \lambda_{i} t\right), \quad T_{i}(0)=1 . \tag{12}
\end{equation*}
$$

In this series, the term $\varphi_{0}(x, t)=\alpha_{0} X_{0}(x) T_{0}(t)$ is the same as φ^{S} (Table 1) up to a constant nonzero multiplier. Let us choose C in the expression of φ^{S} (Table 1) so that $\varphi_{0}=\varphi^{S}$. If we now compute the difference $\varphi-\varphi^{S}$, the term $\varphi_{0}(x, t)$ will cancel out, and we get

$$
\begin{equation*}
\tilde{\varphi}=\varphi-\varphi^{S}=\sum_{i=1}^{\infty} \varphi_{i}(x, t) \tag{13}
\end{equation*}
$$

Since $T_{i}(t)=\exp \left(-v \lambda_{i} t\right)$, we see that $\varphi_{1}(x, t)$ becomes the largest term in (13) when $t \rightarrow \infty$ (assuming $\alpha_{1} \neq 0$ in (12)). We then have

$$
\max _{x \in[0, l]}\left|\varphi^{S}\right| \asymp \exp \left(-v \lambda_{0} t\right), \quad \max _{x \in[0, l]}|\tilde{\varphi}| \asymp \exp \left(-v \lambda_{1} t\right), \quad \max _{x \in[0, l]}\left|\tilde{\varphi}_{x}\right| \asymp \exp \left(-v \lambda_{1} t\right) \quad \text { as } t \rightarrow \infty,
$$

so the estimate (11) results in

$$
\begin{equation*}
\max _{x \in[0, l]}\left|u-u^{S}\right| \asymp \exp \left(-v\left(\lambda_{1}-\lambda_{0}\right) t\right) \quad \text { as } t \rightarrow \infty \tag{14}
\end{equation*}
$$

This paves the way to proving the stability of the stationary solution u^{S}. Indeed, the difference $\left|u-u^{S}\right|$ is an exponentially vanishing quantity when $t \rightarrow \infty$. Nevertheless, the convergence of $\left|u-u^{S}\right|$ to zero might turn out to be very slow; this is the case when the least two eigenvalues λ_{0} and λ_{1} in problem (8), (9) differ only slightly.
We got the estimate (14) under the assumption that $\alpha_{1} \neq 0$ in (12), that is, in the series expansion of φ over the system of eigenfunctions $X_{i}(x)$ there is a nonzero term φ_{1} containing the eigenfunction $X_{1}(x)$. However, if it so happens that one or more initial terms in (13) are zero, then the series (13) for $\tilde{\varphi}=\varphi-\varphi^{S}$ will start at some φ_{n} ($n>1$). In the general case, therefore, instead of (14) we would have

$$
\begin{equation*}
\max _{x \in[0, l]}\left|u-u^{S}\right| \asymp \exp \left(-v\left(\lambda_{n}-\lambda_{0}\right) t\right) \quad \text { as } t \rightarrow \infty \tag{15}
\end{equation*}
$$

where n is the number of the first nonzero term in the series expansion of $\tilde{\varphi}=\varphi-\varphi^{S}$ (13). We have thus proved that the stationary solution u^{S} is stable: $\left|u-u^{S}\right| \rightarrow 0$ as $t \rightarrow \infty$.
Note that the functions $\varphi_{i}(i=1,2, \ldots)$ in (12) have the same explicit formulas as φ^{S} (Table 1), except that each φ_{i} contains its own values in place of k_{0} and x_{0}; let us denote these new constant values by k_{i} and x_{i}, respectively.
All constants k_{i} and x_{i} can be found if we substitute the general solutions of (8) (trigonometric, exponential or hyperbolic functions) for the eigenfunctions $X_{i}(x)(i=0,1,2, \ldots)$ in the boundary conditions (9). In most cases (i.e., cases (a), (c), (e) in Table 1), this substitution yields the following transcendent equations for $\xi_{i}=k_{i} l$:

$$
\begin{align*}
\cot \xi_{i}= & \frac{p}{\xi_{i}}+q \xi_{i} \quad \text { for } \varphi_{i} \text { of form (a) in Table 1, } \quad \lambda_{i}=k_{i}^{2}>0, \quad \text { and } \tag{16}\\
\operatorname{coth} \xi_{i}= & \frac{p}{\xi_{i}}-q \xi_{i} \quad \text { for } \varphi_{i} \text { of form (c) or (e) in Table 1, } \quad \lambda_{i}=-k_{i}^{2}<0, \tag{17}\\
& \text { where } \quad \xi_{i}=k_{i} l>0, \quad p=\frac{l A B}{2 v(B-A)}, \quad q=\frac{2 v}{l(B-A)} .
\end{align*}
$$

The transcendent equation (16), with $\cot \xi_{i}$, may correspond to any i, whereas equation (17), with $\operatorname{coth} \xi_{i}$, may correspond only to $i=0,1$ (the least two eigenvalues λ_{0}, λ_{1}) because hyperbolic functions cannot have more than one zero value on the interval $[0, l]$.
When $A=B$ in (4) and (9), we have an exceptional case: all k_{i} and λ_{i} can be found in a closed form. Here the interval $[0, l]$ contains a whole number of semiperiods of the eigenfunction $X_{i}(x)=\sin \left(k_{i}\left(x-x_{i}\right)\right), i=1,2, \ldots$, which readily yields

$$
k_{i}=\frac{\pi i}{l}(i=1,2, \ldots), \quad \text { while } \quad k_{0}=\frac{|A|}{2 v}, \quad X_{0}(x)=C \exp \left(\pm k_{0} x\right) ; \quad \text { see Table } 1(\mathrm{~d}) .
$$

Therefore, if $A=B$, we find

$$
\lambda_{n}=\left(\frac{\pi n}{l}\right)^{2} \quad(n \geq 1), \quad \lambda_{0}=-\left(\frac{A}{2 v}\right)^{2}, \quad \text { and } \quad \lambda_{n}-\lambda_{0}=\left(\frac{\pi n}{l}\right)^{2}+\left(\frac{A}{2 v}\right)^{2} ; \quad \text { cf. (14), (15). }
$$

Now we will reuse the customary definition of Lyapunov exponents in the context of problem (1), (4) for Burgers equation. Let $u(x, t)$ be a solution of (1),(4). The Lyapunov exponent μ of this solution is defined as

$$
\begin{equation*}
\mu=\limsup _{t \rightarrow \infty} \frac{\ln \left\|u-u^{S}\right\|}{t} \tag{18}
\end{equation*}
$$

This definition, in general, depends on our choice of the norm $\|\cdot\|$. If $u(x, t)$ behaves so that $\left\|u-u^{S}\right\| \asymp \exp (\delta t)$ as $t \rightarrow \infty$, then it is easy to see that δ is the Lyapunov exponent of this $u(x, t)$.
Let us use the norm defined as the maximum absolute value:

$$
\|w(x)\|=\max _{x \in[0, l]}|w(x)| .
$$

Then estimates (14), (15) allow us to determine all Lyapunov exponents for any $u(x, t)$ satisfying (1), (4):

$$
\begin{equation*}
\mu_{i}=-v\left(\lambda_{i}-\lambda_{0}\right), \quad i=1,2, \ldots \tag{19}
\end{equation*}
$$

where, as before, λ_{i} are eigenvalues of (8), (9). Solutions $u(x, t)$ corresponding to the Lyapunov exponents μ_{i} can be written simply as

$$
u_{i}(x, t)=-2 v\left(\left.\ln \left|\varphi^{S}(x, t)+\varphi_{i}(x, t)\right|\right|_{x} ^{\prime}, \quad i=1,2, \ldots,\right.
$$

where $\varphi_{i}(x, t)$ is the respective term of (12). For example, when u^{S} has the form (a) in Table 1, we have

$$
\begin{aligned}
\varphi^{S}(x, t) & =C \sin \left(k_{0}\left(x-x_{0}\right)\right) \exp \left(-v k_{0}^{2} t\right) \quad\left(\varphi^{S} \text { has no zeros for } x \in[0, l]\right), \\
\varphi_{i}(x, t) & =\alpha_{i} \sin \left(k_{i}\left(x-x_{i}\right)\right) \exp \left(-v k_{i}^{2} t\right) \quad\left(\varphi_{i} \text { has } i \text { zeros for } x \in[0, l]\right),
\end{aligned}
$$

and we can write a solution $u_{i}(x, t)$ corresponding to the Lyapunov exponent μ_{i} as follows:

$$
\begin{equation*}
u_{i}(x, t)=-2 v \frac{C k_{0} \cos \left(k_{0}\left(x-x_{0}\right)\right)+\alpha_{i} k_{i} \cos \left(k_{i}\left(x-x_{i}\right)\right) \cdot \exp \left(-v\left(k_{i}^{2}-k_{0}^{2}\right) t\right)}{C \sin \left(k_{0}\left(x-x_{0}\right)\right)+\alpha_{i} \sin \left(k_{i}\left(x-x_{i}\right)\right) \cdot \exp \left(-v\left(k_{i}^{2}-k_{0}^{2}\right) t\right)} \tag{20}
\end{equation*}
$$

Because each individual term in series (12) satisfies the Robin boundary conditions (7), each function $u_{i}(x, t)$ defined as above must satisfy the Dirichlet boundary conditions (4).
We have thus determined the Lyapunov exponents in the nonlinear problem (1), (4) for Burgers equation: we have found that formula (19) relates the Lyapunov exponents μ_{i} to the eigenvalues λ_{i} of the linear problem (8), (9). All Lyapunov exponents μ_{i} are negative; there are countably many of them; we can write explicit formulas for the corresponding solutions $u_{i}(x, t)$ of Burgers equation (1). This is an interesting example of a situation where one can analytically determine the Lyapunov exponents for solutions of a nonlinear PDE with Dirichlet boundary conditions.

References

[1] Karpman, V. I. (1975). Nonlinear Waves in Dispersive Media. International Series of Monographs in Natural Philosophy, Vol. 71, Pergamon, 1975.
[2] Fletcher, C. A. J. (1991). Computational Techniques for Fluid Dynamics. Springer, 1991.
[3] Levitan, B. M., and Sargsjan, I. S. (1975). Introduction to Spectral Theory. Translations of Mathematical Monographs, Vol. 39, AMS, 1975.
[4] Vladimirov, V. S. (1984). Equations of Mathematical Physics. Mir Publishers, 1984.
References added in the English version:
[5] Hopf, E. (1950). The partial differential equation $u_{t}+u u_{x}=\mu u_{x x}$. Comm. Pure and Appl. Math. 3, 201-230.
[6] Cole, J. D. (1951). On a quasilinear parabolic equation occurring in aerodynamics, Quart. Appl. Maths. 9, 225-236.
[7] Protter, M. H., and Weinberger, H. F. (1984). Maximum Principles in Differential Equations. Springer, 1984.
[8] Kreiss, H.-O., and Kreiss, G. (1985) Convergence to steady state of solutions of Burgers' equation. NASA Contractor Report 178017, ICASE No. 85-50. NASA Langley Research Center: Institute for Computer Applications in Science and Engineering. Hampton, VA, 1985.
[9] Ladyzhenskaja, O. A., Solonnikov, V. A., and Uralceva, N. N. (1967). Linear and Quasilinear Equations of Parabolic Type, Nauka, Moscow, 1967 (in Russian). English translation: AMS, Providence RI, 1968.

Copyrights

Copyright for this article is retained by the author.

