Alexei Kourbatov www.JavaScripter.net/math akourbatov@gmail.com

Abstract

Let p_n be the *n*th prime, and consider the sequence $s_n = (2 \cdot 3 \cdots p_n)^{1/n} = (p_n \#)^{1/n}$, the geometric mean of the first *n* primes. We give a short proof that $p_n/s_n \to e$, a result conjectured by Vrba (2010) and proved by Sándor & Verroken (2011). We show that $p_n/s_n = \exp(1 + 1/\log p_n + O(1/\log^2 p_n))$ as $n \to \infty$, and give explicit lower and upper bounds for the $O(1/\log^2 p_n)$ term.

1 Introduction

In 2001 A. Murthy posted OEIS sequence <u>A062049</u>: the integer part of the geometric mean of the first n primes [8]. The sequence is non-decreasing, unbounded, and begins as follows:

 $2, 2, 3, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 20, 21, 23 \dots$

Let p_n be the *n*th prime, and let s_n denote the geometric mean of the first *n* primes,

$$s_n = (2 \cdot 3 \cdots p_n)^{1/n} = (p_n \#)^{1/n}, \quad \text{where} \quad p_n \# = 2 \cdot 3 \cdots p_n = \prod_{k=1}^n p_k,$$

then <u>A062049(n)</u> = $\lfloor s_n \rfloor$. (The product $p_n \#$ is called the primorial of p_n ; see <u>A002110</u>.)

For many years, sequence <u>A062049</u> has been lacking an asymptotic formula; nor did it have any lower or upper bounds for the sequence terms. In 2010 A. Vrba conjectured [5] that

 $p_n/s_n \to e$ as $n \to \infty$.

This was proved in 2011 by Sándor and Verroken [7], and revisited in 2013 by Hassani [3].

In Section 2 we give a new short proof that $p_n/s_n \to e$ and, moreover, we show that

$$p_n/s_n = \exp(1 + 1/\log p_n + O(1/\log^2 p_n)).$$

We give explicit lower and upper bounds for the $O(1/\log^2 p_n)$ term.

2 The main result

Let $\pi(x)$ denote the prime counting function and $\theta(x)$ denote Chebyshev's θ function:

$$\pi(x) = \sum_{\substack{p \le x \\ p \text{ prime}}} 1;$$

$$\theta(x) = \sum_{\substack{p \le x \\ p \text{ prime}}} \log p = \log \prod_{\substack{p \le x \\ p \text{ prime}}} p.$$

Clearly $\pi(p_n) = n$ and $\theta(p_n) = \log(p_n \#)$, so $\log s_n = \log(p_n \#)/n = \theta(p_n)/\pi(p_n)$. Lemma 1. For $x \ge 10^8$ we have

$$\frac{|\theta(x) - x|}{\pi(x)} < \frac{1}{\log^2 x}.$$

Proof. Let $x \ge 10^8$. From Dusart [2] we have the inequalities

$$|\theta(x) - x| < \frac{x}{\log^3 x}$$
 for $x \ge 89967803$ [2, Theorem 5.2],
 $\pi(x) > \frac{x}{\log x - 1}$ for $x \ge 5393$ [2, Theorem 6.9].

Combining the above inequalities we get

$$\frac{|\theta(x) - x|}{\pi(x)} < \frac{x}{\log^3 x} \cdot \frac{\log x - 1}{x} < \frac{1}{\log^2 x}$$

for all $x \ge 10^8$, as desired.

Theorem 2. If $s_n = (p_n \#)^{1/n}$, then $p_n/s_n \to e$ as $n \to \infty$, and for $p_n \ge 32059$ we have

$$\exp\left(1 + \frac{1}{\log p_n} + \frac{1.62}{\log^2 p_n}\right) < p_n/s_n < \exp\left(1 + \frac{1}{\log p_n} + \frac{4.83}{\log^2 p_n}\right).$$
(1)

Proof. Let $x \ge 10^8$. From Axler [1, Corollaries 3.5, 3.6] we have

$$\log x - 1 - \frac{1}{\log x} - \frac{3.83}{\log^2 x} < \frac{x}{\pi(x)} < \log x - 1 - \frac{1}{\log x} - \frac{2.62}{\log^2 x}.$$

Therefore,

$$1 + \frac{1}{\log x} + \frac{2.62}{\log^2 x} < \log x - \frac{x}{\pi(x)} < 1 + \frac{1}{\log x} + \frac{3.83}{\log^2 x},$$
(2)

while

$$\log x - \frac{x}{\pi(x)} - \frac{|\theta(x) - x|}{\pi(x)} < \log x - \frac{\theta(x)}{\pi(x)} < \log x - \frac{x}{\pi(x)} + \frac{|\theta(x) - x|}{\pi(x)}.$$
 (3)

Combining (2) and (3) with the bound $\frac{|\theta(x)-x|}{\pi(x)} < \frac{1}{\log^2 x}$ (Lemma 1), for $x \ge 10^8$ we get

$$1 + \frac{1}{\log x} + \frac{1.62}{\log^2 x} < \log x - \frac{\theta(x)}{\pi(x)} < 1 + \frac{1}{\log x} + \frac{4.83}{\log^2 x}.$$
 (4)

But $\log(p_n/s_n) = \log p_n - \theta(p_n)/\pi(p_n)$, so setting in (4) $x = p_n > 10^8$ we find

$$1 + \frac{1}{\log p_n} + \frac{1.62}{\log^2 p_n} < \log(p_n/s_n) < 1 + \frac{1}{\log p_n} + \frac{4.83}{\log^2 p_n}.$$
 (5)

Exponentiating (5) we prove the theorem for $p_n > 10^8$. Separately, we verify by computation that (1) is true for $32059 \le p_n < 10^8$ as well.

Remarks.

(i) The convergence $p_n/s_n \to e$ is slow (see Table 1). The better approximation

$$p_n/s_n \approx \exp\left(1 + \frac{1}{\log p_n} + \frac{3}{\log^2 p_n}\right)$$
 (6)

has a relative error well below 1% for $p_n > 10^6$, even while p_n/s_n is still far from e. (ii) One can construct approximations with more¹ terms:

$$p_n/s_n \approx \exp\left(1 + \frac{1}{\log p_n} + \frac{3}{\log^2 p_n} + \frac{13}{\log^3 p_n} + \dots\right)$$

where the coefficients 1, 3, 13, ... are terms of OEIS sequence <u>A233824</u>: a recurrent sequence in Panaitopol's formula for $\pi(x)$ [4]. A rigorous proof of such approximations, akin to Theorem 2, would depend on sharper bounds for $\frac{x}{\pi(x)}$ and $\frac{|\theta(x)-x|}{\pi(x)}$, and these sharper bounds may in turn depend, e.g., on the truth of the Riemann Hypothesis.

n	p_n	s_n	p_n/s_n	$\exp(1 + \frac{1}{\log p_n} + \frac{3}{\log^2 p_n})$
5	11	4.706764	2.337062	6.950270
26	101	29.899069	3.378032	3.886576
169	1009	298.623420	3.378837	3.344393
1230	10007	3143.242209	3.183655	3.139064
9593	100003	32619.709536	3.065723	3.032817
78499	1000003	334329.282286	2.991072	2.968628
664580	10000019	3401979.209240	2.939471	2.925864
5761456	10000007	34435454.560637	2.903984	2.895414
50847535	100000007	347413774.453987	2.878412	2.872666

Table 1: Values of $n, p_n, s_n = (p_n \#)^{1/n}, p_n/s_n$ and approximation (6) for $p_n \approx 10^k$

¹ The number of terms is meant to be finite, while p_n should be large enough; otherwise, such approximations would actually be worse than those with fewer terms. When p_n is small, even approximation (6) itself is worse than $p_n/s_n \approx \exp(1 + \frac{1}{\log p_n})$ or $p_n/s_n \approx e$ (see, e.g., the first line in Table 1, $p_n = 11$).

(iii) Bounds (1) strengthen the double inequality of Sándor [6]

$$e < p_n/s_n < \frac{p_n}{p_{n-1}} \cdot p_{n+1}^{\pi(n)/n}$$
 for $n \ge 10$.

3 Acknowledgments

I am grateful to all contributors and editors of the websites *OEIS.org* and *PrimePuzzles.net*, particularly to Anton Vrba who conjectured the limit of p_n/s_n [5]. Thanks also to Christian Axler and Pierre Dusart for proving the $\pi(x)$ and $\theta(x)$ bounds used in the main theorem.

References

- [1] C. Axler, New bounds for the prime counting function $\pi(x)$, preprint, 2014, http://arxiv.org/abs/1409.1780
- [2] P. Dusart, Estimates of some functions over primes without R.H., preprint, 2010, http://arxiv.org/abs/1002.0442
- [3] M. Hassani, On the ratio of the arithmetic and geometric means of the prime numbers and the number *e*, *Int. J. Number Theory* **9** (2013), No. 6, 1593–1603.
- [4] L. Panaitopol, A formula for $\pi(x)$ applied to a result of Koninck-Ivić, Nieuw Arch. Wiskd. 5 (2000), 55–56.
- [5] C. Rivera, ed., Conjecture 67. Primes and e, 2010. Available at http://www.primepuzzles.net/conjectures/conj_067.htm
- [6] J. Sándor, On certain bounds and limits for prime numbers, Notes Number Theory Discrete Math. 18 (2012), No. 1, 1-5. Available at http://nntdm.net/papers/nntdm-18/NNTDM-18-1-01-05.pdf
- J. Sándor and A. Verroken, On a limit involving the product of prime numbers, Notes Number Theory Discrete Math. 17 (2011), No. 2, 1-3. Available at http://nntdm.net/papers/nntdm-17/NNTDM-17-2-01-03.pdf
- [8] N. J. A. Sloane, ed., The On-Line Encyclopedia of Integer Sequences, 2015. Published electronically at http://oeis.org/A062049.

2010 Mathematics Subject Classification: 11A25, 11N05, 11N37. Keywords: asymptotic formulas, geometric mean, primes, primorial.

(Concerned with sequences <u>A002110</u>, <u>A062049</u>, <u>A233824</u>.)