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Abstract

Let pn be the nth prime, and consider the sequence sn = (2 · 3 · · · pn)
1/n = (pn#)1/n,

the geometric mean of the first n primes. We give a short proof that pn/sn → e, a
result conjectured by Vrba (2010) and proved by Sándor & Verroken (2011). We show
that pn/sn = exp(1 + 1/ log pn +O(1/ log2 pn)) as n → ∞, and give explicit lower and
upper bounds for the O(1/ log2 pn) term.

1 Introduction

In 2001 A. Murthy posted OEIS sequence A062049: the integer part of the geometric mean
of the first n primes [8]. The sequence is non-decreasing, unbounded, and begins as follows:

2, 2, 3, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 20, 21, 23 . . .

Let pn be the nth prime, and let sn denote the geometric mean of the first n primes,

sn = (2 · 3 · · ·pn)
1/n = (pn#)1/n, where pn# = 2 · 3 · · · pn =

n
∏

k=1

pk,

then A062049(n) = ⌊sn⌋. (The product pn# is called the primorial of pn; see A002110.)
For many years, sequence A062049 has been lacking an asymptotic formula; nor did it

have any lower or upper bounds for the sequence terms. In 2010 A.Vrba conjectured [5] that

pn/sn → e as n → ∞.

This was proved in 2011 by Sándor and Verroken [7], and revisited in 2013 by Hassani [3].
In Section 2 we give a new short proof that pn/sn → e and, moreover, we show that

pn/sn = exp(1 + 1/ log pn +O(1/ log2 pn)).

We give explicit lower and upper bounds for the O(1/ log2 pn) term.
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2 The main result

Let π(x) denote the prime counting function and θ(x) denote Chebyshev’s θ function:

π(x) =
∑

p≤x

p prime

1;

θ(x) =
∑

p≤x

p prime

log p = log
∏

p≤x

p prime

p.

Clearly π(pn) = n and θ(pn) = log(pn#), so log sn = log(pn#)/n = θ(pn)/π(pn).

Lemma 1. For x ≥ 108 we have

|θ(x)− x|

π(x)
<

1

log2 x
.

Proof. Let x ≥ 108. From Dusart [2] we have the inequalities

|θ(x)− x| <
x

log3 x
for x ≥ 89967803 [2, Theorem 5.2],

π(x) >
x

log x− 1
for x ≥ 5393 [2, Theorem 6.9].

Combining the above inequalities we get

|θ(x)− x|

π(x)
<

x

log3 x
·
log x− 1

x
<

1

log2 x

for all x ≥ 108, as desired.

Theorem 2. If sn = (pn#)1/n, then pn/sn → e as n → ∞, and for pn ≥ 32059 we have

exp

(

1 +
1

log pn
+

1.62

log2 pn

)

< pn/sn < exp

(

1 +
1

log pn
+

4.83

log2 pn

)

. (1)

Proof. Let x ≥ 108. From Axler [1, Corollaries 3.5, 3.6] we have

log x− 1−
1

log x
−

3.83

log2 x
<

x

π(x)
< log x− 1−

1

log x
−

2.62

log2 x
.

Therefore,

1 +
1

log x
+

2.62

log2 x
< log x−

x

π(x)
< 1 +

1

log x
+

3.83

log2 x
, (2)

while

log x−
x

π(x)
−

|θ(x)− x|

π(x)
< log x−

θ(x)

π(x)
< log x−

x

π(x)
+

|θ(x)− x|

π(x)
. (3)
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Combining (2) and (3) with the bound |θ(x)−x|
π(x)

< 1
log2 x

(Lemma 1), for x ≥ 108 we get

1 +
1

log x
+

1.62

log2 x
< log x−

θ(x)

π(x)
< 1 +

1

log x
+

4.83

log2 x
. (4)

But log(pn/sn) = log pn − θ(pn)/π(pn), so setting in (4) x = pn > 108 we find

1 +
1

log pn
+

1.62

log2 pn
< log(pn/sn) < 1 +

1

log pn
+

4.83

log2 pn
. (5)

Exponentiating (5) we prove the theorem for pn > 108. Separately, we verify by computation
that (1) is true for 32059 ≤ pn < 108 as well.

Remarks.

(i) The convergence pn/sn → e is slow (see Table 1). The better approximation

pn/sn ≈ exp

(

1 +
1

log pn
+

3

log2 pn

)

(6)

has a relative error well below 1% for pn > 106, even while pn/sn is still far from e.

(ii) One can construct approximations with more1 terms:

pn/sn ≈ exp

(

1 +
1

log pn
+

3

log2 pn
+

13

log3 pn
+ . . .

)

,

where the coefficients 1, 3, 13, . . . are terms of OEIS sequence A233824: a recurrent sequence
in Panaitopol’s formula for π(x) [4]. A rigorous proof of such approximations, akin to

Theorem 2, would depend on sharper bounds for x
π(x)

and |θ(x)−x|
π(x)

, and these sharper bounds
may in turn depend, e. g., on the truth of the Riemann Hypothesis.

Table 1: Values of n, pn, sn = (pn#)1/n, pn/sn and approximation (6) for pn ≈ 10k

n pn sn pn/sn exp(1 + 1
log pn

+ 3
log2 pn

)

5 11 4.706764 2.337062 6.950270
26 101 29.899069 3.378032 3.886576
169 1009 298.623420 3.378837 3.344393
1230 10007 3143.242209 3.183655 3.139064
9593 100003 32619.709536 3.065723 3.032817
78499 1000003 334329.282286 2.991072 2.968628
664580 10000019 3401979.209240 2.939471 2.925864
5761456 100000007 34435454.560637 2.903984 2.895414
50847535 1000000007 347413774.453987 2.878412 2.872666

1 The number of terms is meant to be finite, while pn should be large enough; otherwise, such approx-
imations would actually be worse than those with fewer terms. When pn is small, even approximation (6)
itself is worse than pn/sn ≈ exp(1 + 1

log pn

) or pn/sn ≈ e (see, e. g., the first line in Table 1, pn = 11).
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(iii) Bounds (1) strengthen the double inequality of Sándor [6]

e < pn/sn <
pn
pn−1

· p
π(n)/n
n+1 for n ≥ 10.
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(2000), 55–56.

[5] C. Rivera, ed., Conjecture 67. Primes and e, 2010. Available at
http://www.primepuzzles.net/conjectures/conj_067.htm

[6] J. Sándor, On certain bounds and limits for prime numbers, Notes Number Theory Discrete

Math. 18 (2012), No. 1, 1–5. Available at
http://nntdm.net/papers/nntdm-18/NNTDM-18-1-01-05.pdf

[7] J. Sándor and A. Verroken, On a limit involving the product of prime numbers, Notes Number

Theory Discrete Math. 17 (2011), No. 2, 1–3. Available at
http://nntdm.net/papers/nntdm-17/NNTDM-17-2-01-03.pdf

[8] N. J. A. Sloane, ed., The On-Line Encyclopedia of Integer Sequences, 2015. Published elec-
tronically at http://oeis.org/A062049.

2010 Mathematics Subject Classification: 11A25, 11N05, 11N37.
Keywords: asymptotic formulas, geometric mean, primes, primorial.

(Concerned with sequences A002110, A062049, A233824.)

4

http://arxiv.org/abs/1409.1780
http://arxiv.org/abs/1002.0442
http://www.primepuzzles.net/conjectures/conj_067.htm
http://nntdm.net/papers/nntdm-18/NNTDM-18-1-01-05.pdf
http://nntdm.net/papers/nntdm-17/NNTDM-17-2-01-03.pdf
http://oeis.org/A062049
http://oeis.org/A002110
http://oeis.org/A062049
http://oeis.org/A233824

	1 Introduction
	2 The main result
	3 Acknowledgments

