On the geometric mean of the first n primes

Alexei Kourbatov
www.JavaScripter.net/math
akourbatov@gmail.com

Abstract

Let p_{n} be the nth prime, and consider the sequence $s_{n}=\left(2 \cdot 3 \cdots p_{n}\right)^{1 / n}=\left(p_{n} \#\right)^{1 / n}$, the geometric mean of the first n primes. We give a short proof that $p_{n} / s_{n} \rightarrow e$, a result conjectured by Vrba (2010) and proved by Sándor \& Verroken (2011). We show that $p_{n} / s_{n}=\exp \left(1+1 / \log p_{n}+O\left(1 / \log ^{2} p_{n}\right)\right)$ as $n \rightarrow \infty$, and give explicit lower and upper bounds for the $O\left(1 / \log ^{2} p_{n}\right)$ term.

1 Introduction

In 2001 A. Murthy posted OEIS sequence A062049, the integer part of the geometric mean of the first n primes [8]. The sequence is non-decreasing, unbounded, and begins as follows:

$$
2,2,3,3,4,5,6,7,8,9,10,11,13,14,15,16,17,19,20,21,23 \ldots
$$

Let p_{n} be the nth prime, and let s_{n} denote the geometric mean of the first n primes,

$$
s_{n}=\left(2 \cdot 3 \cdots p_{n}\right)^{1 / n}=\left(p_{n} \#\right)^{1 / n}, \quad \text { where } \quad p_{n} \#=2 \cdot 3 \cdots p_{n}=\prod_{k=1}^{n} p_{k}
$$

then A062049 $(n)=\left\lfloor s_{n}\right\rfloor$. (The product $p_{n} \#$ is called the primorial of p_{n}; see A002110.)
For many years, sequence A062049 has been lacking an asymptotic formula; nor did it have any lower or upper bounds for the sequence terms. In 2010 A. Vrba conjectured [5] that

$$
p_{n} / s_{n} \rightarrow e \quad \text { as } n \rightarrow \infty .
$$

This was proved in 2011 by Sándor and Verroken [7], and revisited in 2013 by Hassani [3].
In Section 2 we give a new short proof that $p_{n} / s_{n} \rightarrow e$ and, moreover, we show that

$$
p_{n} / s_{n}=\exp \left(1+1 / \log p_{n}+O\left(1 / \log ^{2} p_{n}\right)\right)
$$

We give explicit lower and upper bounds for the $O\left(1 / \log ^{2} p_{n}\right)$ term.

2 The main result

Let $\pi(x)$ denote the prime counting function and $\theta(x)$ denote Chebyshev's θ function:

$$
\begin{aligned}
& \pi(x)=\sum_{\substack{p \leq x \\
p \text { prime }}} 1 ; \\
& \theta(x)=\sum_{\substack{p \leq x \\
p \text { prime }}} \log p=\log \prod_{\substack{p \leq x \\
p \text { prime }}} p .
\end{aligned}
$$

Clearly $\pi\left(p_{n}\right)=n$ and $\theta\left(p_{n}\right)=\log \left(p_{n} \#\right)$, so $\log s_{n}=\log \left(p_{n} \#\right) / n=\theta\left(p_{n}\right) / \pi\left(p_{n}\right)$.
Lemma 1. For $x \geq 10^{8}$ we have

$$
\frac{|\theta(x)-x|}{\pi(x)}<\frac{1}{\log ^{2} x} .
$$

Proof. Let $x \geq 10^{8}$. From Dusart [2] we have the inequalities

$$
\begin{array}{rlll}
|\theta(x)-x| & <\frac{x}{\log ^{3} x} & \text { for } x \geq 89967803 & \text { [2, Theorem 5.2] } \\
\pi(x) & >\frac{x}{\log x-1} & \text { for } x \geq 5393 & \text { [2, Theorem 6.9]. }
\end{array}
$$

Combining the above inequalities we get

$$
\frac{|\theta(x)-x|}{\pi(x)}<\frac{x}{\log ^{3} x} \cdot \frac{\log x-1}{x}<\frac{1}{\log ^{2} x}
$$

for all $x \geq 10^{8}$, as desired.
Theorem 2. If $s_{n}=\left(p_{n} \#\right)^{1 / n}$, then $p_{n} / s_{n} \rightarrow e$ as $n \rightarrow \infty$, and for $p_{n} \geq 32059$ we have

$$
\begin{equation*}
\exp \left(1+\frac{1}{\log p_{n}}+\frac{1.62}{\log ^{2} p_{n}}\right)<p_{n} / s_{n}<\exp \left(1+\frac{1}{\log p_{n}}+\frac{4.83}{\log ^{2} p_{n}}\right) \tag{1}
\end{equation*}
$$

Proof. Let $x \geq 10^{8}$. From Axler [1, Corollaries 3.5, 3.6] we have

$$
\log x-1-\frac{1}{\log x}-\frac{3.83}{\log ^{2} x}<\frac{x}{\pi(x)}<\log x-1-\frac{1}{\log x}-\frac{2.62}{\log ^{2} x}
$$

Therefore,

$$
\begin{equation*}
1+\frac{1}{\log x}+\frac{2.62}{\log ^{2} x}<\log x-\frac{x}{\pi(x)}<1+\frac{1}{\log x}+\frac{3.83}{\log ^{2} x} \tag{2}
\end{equation*}
$$

while

$$
\begin{equation*}
\log x-\frac{x}{\pi(x)}-\frac{|\theta(x)-x|}{\pi(x)}<\log x-\frac{\theta(x)}{\pi(x)}<\log x-\frac{x}{\pi(x)}+\frac{|\theta(x)-x|}{\pi(x)} \tag{3}
\end{equation*}
$$

Combining (21) and (3) with the bound $\frac{|\theta(x)-x|}{\pi(x)}<\frac{1}{\log ^{2} x}$ (Lemma (1), for $x \geq 10^{8}$ we get

$$
\begin{equation*}
1+\frac{1}{\log x}+\frac{1.62}{\log ^{2} x}<\log x-\frac{\theta(x)}{\pi(x)}<1+\frac{1}{\log x}+\frac{4.83}{\log ^{2} x} \tag{4}
\end{equation*}
$$

But $\log \left(p_{n} / s_{n}\right)=\log p_{n}-\theta\left(p_{n}\right) / \pi\left(p_{n}\right)$, so setting in (4) $x=p_{n}>10^{8}$ we find

$$
\begin{equation*}
1+\frac{1}{\log p_{n}}+\frac{1.62}{\log ^{2} p_{n}}<\log \left(p_{n} / s_{n}\right)<1+\frac{1}{\log p_{n}}+\frac{4.83}{\log ^{2} p_{n}} \tag{5}
\end{equation*}
$$

Exponentiating (5) we prove the theorem for $p_{n}>10^{8}$. Separately, we verify by computation that (11) is true for $32059 \leq p_{n}<10^{8}$ as well.

Remarks.

(i) The convergence $p_{n} / s_{n} \rightarrow e$ is slow (see Table 1). The better approximation

$$
\begin{equation*}
p_{n} / s_{n} \approx \exp \left(1+\frac{1}{\log p_{n}}+\frac{3}{\log ^{2} p_{n}}\right) \tag{6}
\end{equation*}
$$

has a relative error well below 1% for $p_{n}>10^{6}$, even while p_{n} / s_{n} is still far from e.
(ii) One can construct approximations with mord terms:

$$
p_{n} / s_{n} \approx \exp \left(1+\frac{1}{\log p_{n}}+\frac{3}{\log ^{2} p_{n}}+\frac{13}{\log ^{3} p_{n}}+\ldots\right)
$$

where the coefficients $1,3,13, \ldots$ are terms of OEIS sequence A233824: a recurrent sequence in Panaitopol's formula for $\pi(x)$ [4]. A rigorous proof of such approximations, akin to Theorem 2, would depend on sharper bounds for $\frac{x}{\pi(x)}$ and $\frac{|\theta(x)-x|}{\pi(x)}$, and these sharper bounds may in turn depend, e.g., on the truth of the Riemann Hypothesis.

Table 1: Values of $n, p_{n}, s_{n}=\left(p_{n} \#\right)^{1 / n}, p_{n} / s_{n}$ and approximation (6) for $p_{n} \approx 10^{k}$

n	p_{n}	s_{n}	p_{n} / s_{n}	$\exp \left(1+\frac{1}{\log p_{n}}+\frac{3}{\log ^{2} p_{n}}\right)$
5	11	4.706764	2.337062	6.950270
26	101	29.899069	3.378032	3.886576
169	1009	298.623420	3.378837	3.344393
1230	10007	3143.242209	3.183655	3.139064
9593	100003	32619.709536	3.065723	3.032817
78499	1000003	334329.282286	2.991072	2.968628
664580	10000019	3401979.209240	2.939471	2.925864
5761456	100000007	34435454.560637	2.903984	2.895414
50847535	1000000007	347413774.453987	2.878412	2.872666

[^0](iii) Bounds (11) strengthen the double inequality of Sándor [6]
$$
e<p_{n} / s_{n}<\frac{p_{n}}{p_{n-1}} \cdot p_{n+1}^{\pi(n) / n} \quad \text { for } n \geq 10
$$

3 Acknowledgments

I am grateful to all contributors and editors of the websites OEIS.org and PrimePuzzles.net, particularly to Anton Vrba who conjectured the limit of p_{n} / s_{n} [5]. Thanks also to Christian Axler and Pierre Dusart for proving the $\pi(x)$ and $\theta(x)$ bounds used in the main theorem.

References

[1] C. Axler, New bounds for the prime counting function $\pi(x)$, preprint, 2014, http://arxiv.org/abs/1409.1780
[2] P. Dusart, Estimates of some functions over primes without R.H., preprint, 2010, http://arxiv.org/abs/1002.0442
[3] M. Hassani, On the ratio of the arithmetic and geometric means of the prime numbers and the number e, Int. J. Number Theory 9 (2013), No. 6, 1593-1603.
[4] L. Panaitopol, A formula for $\pi(x)$ applied to a result of Koninck-Ivić, Nieuw Arch. Wiskd. 5 (2000), 55-56.
[5] C. Rivera, ed., Conjecture 67. Primes and e, 2010. Available at http://www.primepuzzles.net/conjectures/conj_067.htm
[6] J. Sándor, On certain bounds and limits for prime numbers, Notes Number Theory Discrete Math. 18 (2012), No. 1, 1-5. Available at http://nntdm.net/papers/nntdm-18/NNTDM-18-1-01-05.pdf
[7] J. Sándor and A. Verroken, On a limit involving the product of prime numbers, Notes Number Theory Discrete Math. 17 (2011), No. 2, 1-3. Available at http://nntdm.net/papers/nntdm-17/NNTDM-17-2-01-03.pdf
[8] N. J. A. Sloane, ed., The On-Line Encyclopedia of Integer Sequences, 2015. Published electronically at http://oeis.org/A062049.

2010 Mathematics Subject Classification: 11A25, 11N05, 11N37.
Keywords: asymptotic formulas, geometric mean, primes, primorial.
(Concerned with sequences A002110, A062049, A233824.)

[^0]: ${ }^{1}$ The number of terms is meant to be finite, while p_{n} should be large enough; otherwise, such approximations would actually be worse than those with fewer terms. When p_{n} is small, even approximation (6) itself is worse than $p_{n} / s_{n} \approx \exp \left(1+\frac{1}{\log p_{n}}\right)$ or $p_{n} / s_{n} \approx e$ (see, e.g., the first line in Table $1, p_{n}=11$).

